The 72nd I. S. I. J. Meetng, October, 1966

CONTENTS

Lect.		•
*1	Effect of Porosity-Treatment on the Reduction of Iron Ore Pellets.	
	(On the reduction of iron ore pellets— I)	SI
*2	Effect on Porosity-Treatment on the Strength of Iron Ore Pellets.	
	(On the reduction of iron ore pellets— II)	S 2
3	On the Relations between Particle Size of Raw Feeds and Properties Green Balls.	
	(Fundamental studies on pelletizing—Ⅱ)	1293
*4		
5		
*6		
*7		
8		1298
*9	Effect of Particle Sizes on the Properties of Pre-Reduced Pellets.	
	(Studies on the production of pre-reduced iron ore pellets-I)	S 6
10		
	(Study of the pellets containing lime— I)	1300
11	On the Softening of the Pellets Containing Lime during Reduction.	
	(Study of the pellets containing lime— II)	1364
12	On the Reduction of Open Hearth Furnace Dust Pellets by Rotary Kiln.	
	(The study of zinc removal from open-hearth-furnace-dust- II)	
13	On the Equipments and the Operation of the Plant for the Treatment of Steelmaking Dust	
*14		. S7
15	The Mechanism of Adsorption of Phosphate.	
	(On the constitution of phosphor contained in undersea iron sand— V)	
*16	On the Classifing for Separation of Chromium from Laterite.	. S8
17	7 On Segregation Roasting Reactions of Nickel Ores.	.1310
18		
*19		
*20	- ···· · · · · · · · · · · · · · · · ·	. S 10
*21	The High Temperature Equilibrium of Titanium Dioxide and Carbon.	
	(Study on the activity of TiO ₂ in blast furnace slags—I)	
22		
*23		5 12
*24	Evaluation of Pore Diffusion Resistance in the Reduction of Iron Oxide Pellets. (The study of the iron oxide reduction— I)	C 10
25	A TO	1990
26	On Co. 1 C. I to a Waltisha A.I.D. Classon Dlane	
27		
28		. 1023
29	(Studies on combustion control of ignition room— I)	1327
20		.1027
30	(Studies on combustion control of ignition room— I)	. 1330
21	- ATD OG G	1333
31 *32		. S 14
33		. 1336
34	71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.1340
J-	T On the Community of the Paris	

To be held on October 16~18, 1966 at Iron and Steel Technical College.

^{*} The offset printed abstract of this paper is found in Tetsu-to-Hagané, 52 (1966) No. 11.

*35	On the Formation of Calcium Ferrite.	
	(Fundamental studies on self-fluxing sinter— I)	. S 15
36	On the Variation of Sinter Basicity.	.1342
37	Effect of Basicity Silica Content and FeO Content on Properties of Lime Sinter	.1345
38	Properties of Blast Furnace Burdens during Chemical Reduction.	
	(Studies on blast furnace burden properties— I)	. 1348
39	Influence of Burden Properties on Blast Furnace Operation.	
	(Studies on blast furnace burden properties— I)	1350
*40	A Study on the Degradation of Iron Ores.	
41	A Study of Permeability of Ore Burdens by the Reduction Test under Load	
*42	Studies on the Thermal Properties of Iron Ores.	. S 17
43	On the Swelling of Hematite Ore during Reduction.	. 1355
*44	Reduction Kinetics of Calcium Ferrites with Hydrogen.	. S 18
45	On the Degradation of Sinters during Reduction.	. 1358
46	On the Softening Properties of Lime Sinter with Various Basicity Ratios.	. 1361
*47	Kinetics of Thermal Decomposition of Lime Stone.	S 19
*48	On the Reduction of the Ore That Coexists with Solid Carbon by H ₂ +CO+N ₂ Mixed Gas	S 20
49	On the Reduction of Iron Ore by H ₂ +CO+N ₂ Mixed Gas	. 1367
50	Effect of Pulsating Gas on the Reduction of Iron Ore.	
*51	Change of Oxygen Pressure during the Reduction Process.	
	(Study on the reduction rate of iron oxide— I)	S 21
52	The Countercurrent Reduction of Iron Ore in Descending Bed.	. 1372:
53	Application of Rate Equation to Reduction of Ore in the Experimental Shaft Furnace.	
	(Study of reduction process in shaft of blast furnace—II)	.1375
54	Considerations of Iron Reduction Processes.	
	(Basic study on iron making by a miniature blast furnace— I)	. 1377
55	On the Heating-up and Operation of High Temperature Hot Stove	. 1380
*56	On the Tests of Improving Thermal Efficiency of Hot Stove Made of Special Steel Tubes	S 22
57	Construction of High Temperature Hot Stove.	.1382
58	On Some Improvement of Work and Instrument at the Cast of the Blast Furnace	1383
59	Relation between Carbon Deposition and the Changes of Properties of Brick for Blast Furnace	
	and Their Test Method. (Studies of carbon deposition to bricks for blust furnace-I).	1386
60	Investigation on Properties of Higashida No. 6 Blast Furnace Bottom Linings, 5th Campaign.	
	(Study on wear mechanism of blast furnace linings-\mathbb{\mathbb{I}})	1389
61	Some Considerations on Scaffolding at the Blast Furnace Shaft.	1392:
62	On the Shaft Scaffolding Removal in H. No. 1 Blast Furnace.	1395
63	The Effect of the Slag Composition on the Desulfurization Rate in Blast Furnace	1398
*64	On the Silicon Transfer from Molten Slag to Iron.	
	(Kinetic study on the slag-metal reactions— I)	S 23
*65	Polarization Potential of Electrode Reactions with Si Transfer between Molten Slag and Iron.	
	(Electrochemical study on the slag-metal reactions— I)	S 24
66	Study on the Silica Reduction in Blast Furnace.	
	(Study on meltzone of blast furnace— I)	1401
67	On the Physical Phenomena in the Blast Furnace.	
	(Analysis on the conditions of the blast furnace operation— I)	1404-
68	On the Productivity of the Blast Furnace.	
	(Analysis of the conditions of the blast furnace operation— I)	1407
69	Effect of Wind Rate on the Coke Consumption in Blast Furnace	1410
70	Influence of Tuyere Conditions on Destruction of Raceway and Flow Distribution.	
	(Some consideration of blast furnace practice— I)	1413
71	Influence of Size Distribution of Materials on Physical Aspects of Packed Bed.	
	(Some consideration of blast furnace practice— I)	1415
*72	The Effect of Gas Permeability on the Blast Furnace Practice	S 25-
*73	Some Consideration on the Automation of the Blast Furnace.	
	(Some consideration of blast furnace practice—II)	S 26.

*74 *75	Mathematical Model of Nitrogen Absorption at Tapping from Converter	
*76	The Effect of the Tap-Degassing Method upon Degassing of Steel for Larg Forgings and	S 20
	Castings. (The influence of the killed state and rimmed state of the bath against	0.00
*77	degassing—I)	S 29
*//	On the Reaction between Molten Steel and Refractories Under Vacuum.	
*78	(Study on refractory for ingot making— I)	S 30
10	(A study on the rapid determination of oxygen content dissolved in molten steel by	
70	EMF measurements—II)	
_, 79	On the Rate of Absorption of Nitrogen in the Liquid Iron Containing Surface Active Elements.	
*80	(Studies on the rate of absorption of nitrogen in liquid iron— V)	
*81	A Preliminary Study on Gas Phase Reaction in Consumable Electrode Vacuum Arc Melting	332
, .	and Sintering of Metal Powder. (Studies on application of an omegatron to metallurgical	
	research— I)	
*82	Quantitative Determination of Partial Pressures with an Omegatron.	333
	(Studies on application of an omegatron to metallugical research— II)	S 24
*83	Study on the Kinetics of Silica Reduction by Carbon Dissolved in Iron.	
*84	Decarburazing Rate of the Molten Low-Carbon Fe-C Alloys with Oxidizing Gas.	0.00
	(Kinetics of the oxidation of molten iron alloys—I)	S 36
*85	Decarburization of Liquid Steel by Oxidizing Gas.	
86	Desulphurization Rate and Change of Area of Reaction Interface.	
	(Kinetic study on the steelmaking reactions— I)	1421
87	Mass Transfer in Pb-Cd Alloy-Salt Systems.	
2	(Model studies of slag-metal reactions-I)	1424
88	Surface Tension of CaO-SiO ₂ -Al ₂ O ₃ and CaO-Al ₂ O ₃ Slags.	
	(Study on surface tension of molten slag-I)	1427
*89	Effect of Alloying Elements on Interfacial Tension between Molten Steel and Slag.	
	(Fundamental study on interfacial phenomena in iron and steel-making processes- ▼)	S 38
*9 0	Deoxidation of High Alloy Steel by Silicon.	S 39
*91	Determination of Creep Rate of Iron and Steel at Temperatures above 1100°C to the	
	Melting Point.	
*92	The Removal of Silicon during the Decarburization of Molten Iron with H ₂ O-Ar Mixtures	S 41
93	Dissolution of Steel Cylinder into Liquid Fe-C Alloy.	
	(Stirring of liquid iron in H. F furnance—I)	1429
94	Intencity of Stirring of Liquid Fe-C Alloy in H. F Furnaces.	
٥-	(Stirring of liquid iron in H. F furnace—II)	1432
95	Effect of FeO, MgO or MnO on the Electrical Conductivity of Molten CaO(43)-SiO ₂ (43)-	
00	Al ₂ O ₃ (14) Slag. (Research on the molten slag refyning—W)	1436
96	Effect of V ₂ O ₅ , Cr ₂ O ₃ , P ₂ O ₅ or TiO ₂ on the Electrical Conductivity of Molten CaO(43)-	
07	SiO ₂ (43)-Al ₂ O ₃ (14) Slag. (Research on the molten slag refyning—X)	1438
97	Effect of NaF ₂ , MgF ₂ or AlF ₃ on the Electrical Conductivity of Molten CaO(43)-SiO ₂ (43)-	
ΛO	Al ₂ O ₃ (14) Slag. (Research on the molten slag refyning—X)	1441
98	Effect of Nickel, Molybdenum, Vanadium, Tungusten and Cobalt on the Activity of Carbon	1 4 4 0
*99	in High Carbon Liquid Steel	
*100	Activity of Sulphur in Liquid Iron	
101	On the Reduction of Synthetized Fayalite with Hydrogen.	5 43
101	(The study of the formation and reduction of fayalite— I)	1445
102	The Silica Reduction between CaO-MgO-Al ₂ O ₃ and Carbon-Saturated Iron.	
103	Exchange Reaction of Elements between Slag and Molten Iron.	
103	On the Rising Velocity of SiO ₂ Particles in Static Molten Iron.	1-171
10-7	(Study on the rise of deoxidation products—II)	1454
105	On the Rate of Deoxidation Mainly by Aluminium in Tranquil Steel Bath	_ 1JT

	(Kinetic research on deoxidation of steel-WI)	1457
106	On Separation Mechanism of Inclusion in Stirred and Tranquil Steel Bath.	
	(Kinetic research on deoxidation of steel— II)	1460
*107	On the Deoxidation with Calcium-Silicide in Liquid Iron.	
	(Study on the behaviour of complex deoidizers—I)	S 44
108	On the Composition of the Inclusion Formed on Co-Deoxidation	
*109	Behaviour of Deoxidation Products in Si or Mn Deoxidation.	
	(Study on behavior of deoxidation products in iron and steel— I)	S 45
110	On the Composition of Oxide in Equilibrium with Liquid Iron-Chromiumoxygen Alloys	
111	Consideration on the Formation Mechanism of Chromium Containing Oxide Inclusions	
*112	The Effect of Nickel on the Oxide Inclusion Formed in Cr-Ni Steels	
113	Kinetic Study on the Al and V Deoxidation of Liquid Iron	1470
114	On the Composition of Deoxidation Product after Addition of Si-V and Si-Al into Liquid Iron	11472
115	Mixing Efficiency of Shaking Ladle	1475
*116	On the Operation and Improvement of Hot Metal Mixer in Wakayama Steel Works	S 47
117	Construction of No. 3 Converter and Two Vessel Operation at Hirohata Works	1477
118	Effect of the Steelmaking Conditions on the Dephosphorization in LD Converter	1479
119	On Dephosphorization of the LD-AC Process.	1481
120	On the Blowing Condition Indicater.	
	(Study on the effect of blowing conditions on blowing reactions- I)	1483
121	Analysis of Blowing Reactions Using the Indicater.	
	(Study on the effect of blowing conditions on blowing reactions— ${\mathbb I}$)	
122	Effect of Three-Hole-Nozzle Life on the Blowing	
123	On the Furnace Gas in LD Converter.	1491
124	Continuous Temperature Measurement of Molten Steel in LD Converter during Blow.	
	(Study on the instrumentation of LD converter— I)	
125	Computer Control of LD Converter at Tobata Steel Plant.	
126	On the Characteristics of Supersonic Jet in LD Converter.	
*127	The Behaviour of Gas Flow Around the Fire Point of LD Converter.	
128	The Behaviour of Carbonaceous Materials in Tar-Bonded Dolomite Brick for LD Converter	
*129	On the Oxygen Converter Brick Using of Mag-Dolo Clinker as Raw Material	
*130	Changes in Properties of Basic Refractories by High Temperature Firing.	
131	On the Construction and Operation of LD Converter Plant at Kure Iron Works	1304
*132	Open Hearth Furnace	S 51
*133	Influence of Combustion Control upon the Atmosphere of Open Hearth Furnace	
*134	Introduction of Computer Control to the Open Hearth Furnace	
135	Some Studies of the Fuel Consumption in the O.H.F.	
136	The Calculation Formula of the Production Rate in the O.H.F.	
137	Melting of Carbon Deoxidized Pure Iron in Magnesia Crucible of Low Silica Content.	
	(Pure iron melting—I)	1512
*138	On a Method of Electro-Magnetic Stirring.	
	(Study on the refining by electro-magnetic stirring— I)	S 54
140	Making of Al-Fe Alloys by an Electroslag Melting Process.	
*141	Internal Soundness of Continuously Cast Billets. (90mm square)	
*142	On the Tundish Nozzle Brick for Continuous Casting	
*143	Comparison of Nb-Carbide to Ferro-Nb as a Adding Reagent in Nb-Added Steels	
*144	On the Comminution of High-Carbon Ferrochrome.	
	(Studies on decarburizing high-carbon ferrochrome in vacuum— II)	S 58
*145	On the Desulphurization of Crude Fe-Ni in the 8 t Low Frequency Induction Furnace	
147	On the Segregation Pattern of Rimming Steel Ingot.	
	(Study on segregation of large rimming steel ingot— I)	1517
148	Influences of Mould Shape on Segregation of Rimming Steel Ingot.	
	(Study on segregation of large rimming steel ingot—I)	1519
149	Reactions in Solidifying Rimming Steel Ingots	1522

150	On Distance from Ingot Surface to Skin-Hole.	
,,,,	(Study on solidification structures of semi-killed steel ingot— IV)	1525
151	On Length of Skin-Hole. (Study on solidification structures of semi-killed steel ingot-V)	1528
152	Mechanism of Formation of Honeycomb Blowhole Zone.	
	(Study on solidification structures of semi-killed steel ingot-\mathbb{\mathbb{I}})	1530
153	Effect of the Shape of Ingots on the Cavities Formed in Killed Steels.	1533
154	Some Experimental Results on Settling Phenomena of Equi-Axial Crystals. (Studies on	
	relation between the mechanism of formation of negative segregation and formation	1505
	of oxide inclusions in large steel ingots-W)	1520
155	Effects of Hot Top on Segregation of 2.6 t Killed Steel Ingots.	1541
156	Effects of Pouring Temperature on Macro-Structure and Segregation of Killed Steel Ingot	1341
157	Investigation on Non Metallic Inclusions Originated from Graphite Mold Stool.	1544
150	(Study of non metallic inclusions from casting pit refractories—II)	1011
158	Solidification Velocity during Early Stage of Ingot Solidification. (Tracer application of RI to steel works—XII)	1546
159	Distribution of Non Metallic-Inclusion Originated in Stool Coat.	
159	(Tracer application of RI to steel works—W)	1549
16 0	Separation Velocity of Primary Deoxidation Product in Ladle.	
100	(Tracer application of RI to steel works—W)	1552
*161	On the Blow-Holes of the Al-Killed Ingots Containing Nitrogen and the Closing	
	of the Blowholes by Rolling.	S 60
*162	On the Statistical Considerations for Creep-Rupture Data	S 61
*163	Effect of Si on High Temperature Strength of Low Carbon Steel Containing N and Al	S 62
*165	Resistance to Fire Cracking of High Carbon Cr-Mo Steels and Cr-Mo Cast Iron Made from	
	High Purity Iron Sand Pig. (Properties of several kinds of iron and steels made from	
	high purity iron sand pig— N)	. S 63
166	Effect of Cr on High Temperature Strength of Cr-Mo Heat-Resisting Steel.	
	(Study of medium Cr heat-resisting steel— I)	. 1557
167	Effect of Alloying Elements on Mechanical Strength and Damping Capacity	
	of 12% Cr Steels.	. 1559
168	Direct Observation of the Tempering Process of 12% Cr Heat Resisting Steels	1561
169	High Temperature Oxidation Behaviours of Fe-Cr System Alloys.	. 1563
170	The Effect of Cu, Nb and V on Creep Rupture Properties of 17Cr-10Ni-1.5Mo Steel.	1566
	(Study on austenitic heat resisting steels—Ⅳ)	. 1500
*171	The Effect of C on the Properties of Cr-7Ni-9Mn Sheet Resisting Steel.	S 64
*170	(Study on Mn-Cr-Ni modified heat resisting steels—I)	. S 65
*172	On the High Temperature Strength of 25Cr/20Ni Stainless Steels.	
173	On the Grain Boundary Reaction of 10M 6N Type Alloys and Effects of Niobium on the High Temperature Properties of This Type Alloys.	1569
*174	The Effect of C and N on Rupture Strength of 28Cr-15Ni Heat Resisting Cast Steel	. S 66
	Influence of Nitrogen and Carbon on High-Temperature Strength of 25%Cr-28%Ni-2%	
175	Mo Heat-Resisting Steels.	
	(On the high-nitrogen 25% Cr austenitic heat-resisting steels—\(\mathbb{\mathbb{I}}\)	. 1572
176	Effect of Principal Alloying Elements on Both the Aging and Creep Rupture Characteristics	
110	of 21-4N Valve Steel	.1574
*177	Effect of Boron on High Temperature Properties of 21-4N Valve Steel.	
*178	Effect of Heat Treatment on Machinability of 21-4N Steel.	. S 68
*179	On the Mechanical Properties of 21-12N Steel.	. S 69
*180	Effect of the Heat Treatment on the Transverse Ductility.	
	(Study on the ductilities in large carbon steel forgings— I)	. s 70
*181	On the Transverse Ductility and the Mass Effect of Forgings.	
	(Study of weldable forged high strength steel—II)	. S 71
*182	The Influence of the Thermal History on the Hardenability of Steel.	. S 72
* 183	Factors Affecting on the Stress-Strain Curve of Steel Sheet.	

	(Studies on the stress-strain curve of steel sheet— I)	S 73
*184	On the Approximation of Stress-Strain Curve of Steel Sheet. (Studies on the stress-strain curve of steel sheet— I)	S 74
185		
186	Relationship between Internal Defects in Steel and Tensile Properties in Thickness Direction On the Temperature Dependence of Flow Stress at High Strain Range and Work Softening	
	Phenomenon in Mild Steel	1579
187	Effect of Tensile-Straining Rate upon Plastic Deformation Behaviour of the Unstable	
	Austenitic Stainless Steel	1582
188	Formularization of Resistance to Deformation of Plain Carbon Steels at Elevated Temperature.	1584
*189	A Study on Abnormality near the Leading End of Extruded Tube	
*190	Study of Manufacturing Process of 13%Cr Stainless Seamless Tube. (Hot workability— I)	
*191	Pressure Distribution on Circular Die Surface during Extrusion.	
*192	Analysis of Rolling Schedule for Stretch Reducer.	
*193	On the Surface Treatment. (Studies on the cold working of steel tubes— 1)	
*194	Cold Plug Drawing Tests of Stainless Composite Steel Pipes. (Study of composite materials—IV)	
195	Thickness Measurment of Steel Plate with γ-Ray Thickness Gauge	
196	Effect of r-Value on the Springback of Press-Formed Parts.	
*197	Effects of N, Al and Manufacture Veriables on Drawability of Cold Rolled N-Al Sheet	1505
131	Steel. (Deep drawability of low carbon N-Al steels— I)	S 91
*198	Cold Rolling and Recrystallization Texture.	501
130	(Deep drawability of low carbon N-Al steels— I)	S 82
*199	Studies of Deformation Process of Surface Crack of Angle Section Steel with Mechanical	
	Deffect Bloom.	
*200	On the Surface Seams in Cold Rolled Sheet of 18-8 Stainless Steel	
*201	On the Carbon Steel Wire Drawing by Super High Pressure Forced Lubrication.	S 85
*202	On the Manufacturing of Square Cross Sectional Tapered Wire.	o 00
	(On the manufacturing of tapered wires—I)	S 86
*203	On the Manufacturing Processes of Tapered Wires.	0.07
004	(On the manufacturing of tapered wires—I)	
204	Identification of Scales of Heavy Oil-Fired Boilers by X-Ray Diffraction Method	
*205	Determination of Reduction Degree by Fast Nutron Activation Analysis.	5 88
*206	On the Fluctuation of Gas Utilization Ratio in Blast Furnace. (Investigation of the characteristics of B.F by continuous top gas analysis— I)	S 89
207	Emission Spectrochemical Analysis of 18-8 Stainless Steel.	
	(Study on emission spectrochemical analysis of iron and steel- IV)	
*208	Quantitative Analysis of High Nickel Cast Iron. (Studies on Quantovac analysis- ▼)	
*210	The X-Ray Fluorescence Analysis of Low Alloy Steel with the Fluroprint Spectrometer	S 91
211	Determination of Oxide Inclusions in 18-8 Stainless Steel by Bromine-Methanol Separating	
	and Nitric Acid Treating Method.	
*212	Photometric Determination of Zirconium in Stainless Steel with Arsenazo I	
*213	On the Determination of Trace Calcium in Steels.	
*214	Properties of Mn-Cr Automotive Case Hardening Steel.	S 94
*215	Effects of Small Amounts of Chromium and Molybdenum on Behaviours of Carbon and Nitrogen in Carbonitrided Case of Steel.	S 95
*216	Embrittlement of Several Steels in High Temperature and High Pressure Ammonia	
	Atmosphere	. S 96
*217	On the Nitrogen Absorption in Fe-Hf and Fe-Y Alloys	.1600
*218	Some Observation on the Sulphurized Layer of Iron	
*219	On the Properties of Supercoat.	
221	Cementing of Steel Sheets with Epoxy Resin	.1602
*222	On the Manufacturing Procedure and Mechanical Properties of Inconel Clad Steel	
223	On the Formation of Spheraidal Graphite in the Pig Iron at the Neighboring Temperatures of Solid-Liquid Coexisting Ranges of Iron Carbon Phase-Equilibrium Diagram.	

	(Study on solidification process of pig iron— I)1605
22 4	On the Crystallization of Spherical Graphite Frozen from Molten Cast Iron.
44 7	(Study on the graphitization of cast iron— I)
*225	Historical Analysis of Today's Material Competition
*226	About Decline of Tatara
*227	Behavior of Oxide Inclusions in Steel during Hot Rolling
228	Behavior of Manganese Silicate Inclusions in Steel during Hot-Rolling.
220	(A study of non-metallic inclusions in 18-8 stainless Steel— II)
*229	Various Inclusions and Fatigue of Steel. (Fundamental research on relationship between
*229	fatigue properties of steel and inclusions— I)
*000	Effect of Non-Metallic Inclusion on the Fatigue Life of Bearing Steel
*230	Effect of the Structure of Materials on the Damages Due to Rolling Contact.
231	(On the damages due to rolling contact of back-up roll materials— V)
*000	
*232	On the Fatigue of High Quality Large Steel Casting.
000	(On the fatigue strengh of high quality large plain carbon steel casting—I)
233	The Flat Fracture of the Pressure Weld of Bar Steels
*234	The Relation between Tension Fracture and Heat Treatment in accordance
	with Steel Grades
*235	Appearance of Fatigue Fracture Surfaces of High Strength Steel as a Function of Strength
	Level and Stress Level
236	The Effect of the Notch on the Fatigue of High Tensile Strength Steels
*237	The Effect of Plating and Temperature.
	(The delayed failure properties of high strength steels—II)
238	Effect of Martensite on the Kinetics of Bainite Formation in a Ni-Cr-Mo Steel1621
*239	Normalized Type High Strength Steels.
	(On the factors which affect mechanical properties of low alloy steels—II)
*240	The Influence of Heat Treatment on the Strength of Nb Treated Steels
*241	The Precipitates in Nb Treated Steel
*242	The Effect of Nb, Mo Addition on Machinical Properties of Cr Bearing Low Alloy Steels.
	(The effect of Nb, Mo addition on Cr bearing low alloy steels-I)
*243	The Fffect of Nb, Mo Addition on Elevated Temperature Properties of Cr Bearing
	Low Alloy Steels. (The effect of Nb, Mo addition on Cr bearing low alloy steels—II) S 113.
*244	Effect of Ti on Ni-Al Age Hardening Steels
*245	Study on Aging Behavior of Maraging Steel Containing Chromium
*246	Strengthening Mechanism and an Unique Feature for Martensite Transformation
	of Ausformed Steels
*247	An Aspect on the Method of Revealing the Austenite Grain Size in Steel
*248	Effect of Chemical Composition on the Tendency of Grain Refining.
	(Studies on austenitic grain—II)
*249	On the Heat-Treatment Characteristics of Ni-Mo-V Steel.
	(Fundamental study of large forging—II)
*2 50	On the Heat-Treatment Characteristics of Ni-Cr-Mo-V Steel.
	(Fundamental study of large forging— N) S 120-
251	Magnetic Properties and Electrical Resistivity of High Carbon Steel Isothermally
	Transformed
252	The Effect of Heating Temperature and Holding Time on Micro-Structure and Hardness
	of High Carbon Low Chromium Steel
*253	The Effect of Mo on the Properties of SAE 51440 C S 121.
2 54	Effects of Ni and Cr on Some Properties of Plain Carbon Tool Steel.
	(Studies on effects of metallic impurities on properties of steel— VI)
255	Production of Doubly Oriented Magnetic Sheets of Fe-Al-Si Alloys
256	Effect of Impurities Additions on the Secondary Recrystallization Texture in Silicon Iron.
-	(Studies on single oriented silicon iron— I)
257	Electron-Microscopic Observation of Impurities in Promoting the Secondary Recrystallization
	of Silicon Iron. (Studies on single oriented silicon iron— I)

*258	On the Low Carbon Steel Sheets with Coarse Grain Only in Core Section
*259	On the Relation between Recrystallization Behavior and Formability of Low Carbon
	Steel Sheets S 123
*260	The Effects of High Pressure on Some Properties of Iron and Alloy Steels.
	(Fe-C alloys— I)
261	On Cooling Rate by Forced Water Cooling to Carbon Steel. (Study on cooling of steel- I)1640
262	On Heat Transfer Coefficient by Forced Water Cooling to Carbon Steel.
	(Study on cooling of steel—Ⅱ)1643
263	On Microstructure of Warm Drawn Steel Wires
*264	Study of Drawability of Hard Steel Wire Rod
*265	Influences of Nitrogen on Stress Relaxation of High Carbon Steel Wires
266	On the Quality of High Carbon Steel Hoop from Continuously Cast Billet.
	(On the quality of steel from continuously cast billet—II)
*267	On the Tempering Behavior of 3Cr-3Mo and 3Cr-3Mo-3Co Steels.
	(Study on hot-work tool steel— X)
*268	Study on the Wear and Shock Resisting Tool Steels
*269	Study on the Toughness of High-Carbon High-Chromium Steels for Cold Work S 129
*270	Study on Cold Work Tool Steels Using Thermal Shock Equipment.
	(On the hardened steel ralls of cold strip mills— I)
*271	Phenomenological Theory on Irradiation Sensitivity of Steel
272	Effect of Alloying Elements on Low Temperature Ductility of Ni Cu Steels.
	(A study of Ni Cu steel— I)1650
*273	Study on Charpy Impact Strength at Low Temperatures of 6% Ni Steel Weld Metal S 132
274	Effect of Shapes of Test Pieces, Temperature and Deformation Rate on Tensile Properties
	of Mild Steel. (Measurement of tensile properties of steel with a high speed impact
	tension testing maching—XI)1653
275	Some Studies on the Drop Weight Test of Thick Steel Plate
*276	Effect of Carbon Content on Grindability of 13Cr Stainless Steel for Cutleries
*277	Effect of Heat Treatment on Grindability of 13Cr Stainless Steel for Cutleries
278	On the Heat Treatments of the 13% Cr Stainless Steel for Blades
279	Effect of Alloying Elements on the Magnetic Permeability of Type 304 Stainless Steel after
	Cold Working
*280	Effect of the Cold Works and Heat Treatments on the Mechanical Properties of 18-8
	Stainless Steel Wires S 135
*281	On the Heating Element from Electroslag Melting Process
*282	On the Strain-Rate Dependence of the Toughness in High Speed Steels under Torsional
	Stress. (Study on the toughness of tool steels— I)
*283	X-Ray Diffraction Study on the Tempering Process of High Speed Steel \$138
*284	Effect of Ingot Size and Forging Ratio on the Structure and Various Properties
	of High Speed Steels

Contents of Panel Discussion

Chairman Prof. Dr. Takao SASAB	Chairman	Prof.	Dr.	Takao	SASABE
--------------------------------	----------	-------	-----	-------	--------

PD.	1 .	On Relationship among Top Pressure, Wind Rate and Coke Rate in Operation of	1663
		High Top Pressure.	1666
PD.	2	High Top Pressure Operation of Blast Furnace.	1660
PD.	3	Installations of Mizue No. 1 Blast Furnace for High Top Pressure Operation	1009
PD.	4	On the Operation of High Top Pressure in Chiba No. 5 Blast Furnace.	16/2
		Chairman Prof. Dr. Toru Araki	
PD.	5	Solidification Theory of Steel Ingots and Nucleation and Growth	1675
		of Deoxidation Products.	1075
PD.	6	Formation of Large Oxide Inclusion Appeared in a Settling Crystal Zone	1670
		of Large Steel Ingot.	10/0
PD.	7	On the Constitution of Large Inclusions Detected by Ultra-Sonic Testing	1001
		of Heary Steel Plates and Their Formation Origins.	1001
		Chairman Prof. Dr. Seita SAUKUI	
PD.	8	On the Precision of Hot Torsion Test	1685
PD.		Determination of Flow-Stress by Hot-Torsion Testing	1687
PD.	10	On the Classification in Hot Twist Deformation Pattern and Behavior of Secondary Stress	1689
PD.		The Application of Hot-Twist Tesst for the Improvement of Hot Workability	
	• •	in Austenitic Stainless.	1693
PD.	12	A Simulation of Ausforming Processes of 13% Cr Stainless Steel by Impact Torsion Test	1695
		Chairman Prof. Dr. Gunji Shinoda	
PD.	10	The Correction Procedures in Quantitative Electron-Probe Microanalysis	1697
PD.		The Electron-Probe Microanalysis of Iron Ores and Oxide Inclusions in Steel.	1700
		Study on the Microscopic Structures of the Non-Metallic Inclusions in Steel	
PD.	10	by X-Ray Microanalyser.	1704
DD	16	Analysis of Minor Constitutes Isolated from Steel by Electron Probe Microanalyser	1706
PD.		Stable Sulphides in Heat-Treated Steel.	1709
PD.		X-Ray Micro-Analysis of Micro Segregation in Stainless Steel.	1711
PD.		Analysis of Light Elements in Steel by Electron Probe Microanalyser.	1713
PD.	19	Analysis of Light Elements in Steel by Electron 170be Wicroanalyser.	1,10
		Chairman Prof. Dr. Ryukiti R. HASIGUCTI	•
	00	C. C. Diagram and Will Street in Iron Allows	S 141
*PD.		Orientation Dependence of Slip Planes and Yield Stress in Iron Alloys.	3 145
*PD.		Behaviour of Lattice Imperfection and Solute Atoms in Iron.	2 140
*PD.		Lattice Deffects in Cold-Worked Low Carbon Steels and Their Annealing Processes	3 149 2 159
*PD.		On the Interaction between Dislocation and Solute Carlon Atoms.	5 153
*PD.	24	Impurity Effect on the Carbon Precipitation in Super Pure Iron.	5 156
*PD.	25	Surface Structures and Lattice Defects of Iron.	2 160